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Abstract

In this paper we apply the notion of Power, as has been
defined by one of the authors for a general communica-
tions system, to ATM switching systems. In general, the
Power of a system synthesizes basic performance metrics
such as the system’s throughput, mean delay and packet
loss. This integrated measure can be used to character-
ize the performance of a system (e.g., identify its optimal
operating point) or even to compare it to other systems.
We utilize the power function to systematically quantify
and compare the performance of ATM switches.

1 Introduction

The performance of a communications system is very crit-
ical and fundamental in designing, evaluating or compar-
ing it to other systems. We consider a communications
system where packets (or messages) arrive, receive ser-
vice and depart. Let A be the input load applied to the
system and Z denote the mean service time (received by a
packet). The following fundamental system performance
characteristics are defined:

o throughput, v = v(X), the rate at which packets re-
ceive service (i.e., depart from the system),

o mean delay (response time), T' = T'(}), the average
time (queueing and service) spent by a packet while
it resides in the system,

e blocking probability, Pg, the probability that an ar-
riving packet gets rejected (denied access) by the sys-
tem. Pp is a function of A and can be a function
of other parameters too, depending on the system
description, such as buffer size, number of servers,

bandwidth.

From these principal parameters a number of addi-
tional descriptors may be obtained such as the wutiliza-
tion factor, denoted by p (0 < p < 1), which indicates
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the proportion of time the system is busy (i.e., serving
packets).! Furthermore, using Little’s result, the average
queue length (numkﬁr of packets queued) L or the average

number in system N can be obtained (i.e., N = 4T).
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Figure 1: A schematic description of the performance
characteristics of a general system.

The original set of performance measures constitute
a quantitative basis and a set of common criteria for de-
scribing a system’s behavior and evaluating its perfor-
mance. Fig. 1 depicts a general system and some of its
basic performance metrics. From the same figure note
that APg = A — . It is often the case that a system can-
not reach its highest capacity thus not yielding a 100%
throughput. That means that the system reaches its max-
imum throughput at input loads where Az < 1. Exceed-
ing that critical load drives the system to overloaded sit-
uations (i.e., delay and queue length grow to infinity).
Below we show an example of a throughput-input load

function
_ A,
7= Ymaz

where Ymqe represents the maximum input load that
can be handled (and hence the maximum throughput
achieved) by the system without causing any instabil-
ity. Thus, in order for a system to be stable we require
that A < ¥maz. The above example, shown graphically in
Fig. 2, refers to the ideal case (for a no-loss system, i.e.,
Pp = 0); normally throughput degrades for A > ymaz,
unless some type of flow control is implemented. As A (or
v) approaches Y qy the system becomes saturated. Tt is

A S Ymaz
A 2 Ymaz (1)

1For a queueing system with m(< o) servers, e.g., G/G/m, it
holds that p = vZ/m and it is required p < 1 in order for the system
to be stable (ergodic).



then apparent that 4,4z is the critical value and finding
it is precisely the key point in a throughput analysis.

Fig. 3 shows a mean delay profile. The minimum
mean delay measured in a system is that of the mean
service time Z. For the above example of throughput, T
is expressed as

_ A
T=r+4+ ——
7ma:c_7

Thus, as ¥ — Ymaz then T —, 0o where we assume that
A varies slowly with 7.
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Figure 2: The (ideal) throughput characteristic of a sys-
tem.

How these characteristics, namely throughput, mean
delay and blocking, interplay is the focus of our discus-
sion. Recognizing the practical importance of evaluating
ATM switching systems our objective is to collectively use
these main performance measures of our interest in order
to study the performance across various ATM switches.

™)

Delay

Input load

Figure 3: The delay characteristic of a system.

2 The simple Power Function

The fundamental need to characterize the overall perfor-
mance of a communications system led one of the authors
[7], [8] to define and investigate a homogeneous perfor-
mance measure known as Power 2 [1]. The power of a
system synthesizes the system’s various performance met-
rics and characteristics such as: throughput, mean delay,
blocking probability. It can be extended to even include
other factors such as delay variance, cost) as to make it
more robust and accurate. As a function, power can be

2The notion of power for a communications system takes its
analogy [1] from physics, where throughput corresponds to energy
and delay to time.

used to identify those operating point where a system de-
livers its best performance. Power combines “competing”
performance measures such as throughput and delay or
delay and blocking. As we increase the applied input load,
throughput increases (see Eq. (1)) but delays become
longer (as the system tends to saturate). There is clearly
a tradeoff between those two measures. The notion of
power proves to be useful in addressing this tradeoff is-
sue. It appears as a natural measure for characterizing
real-time traffic such as video and speech, whose efficient
transmission requires, simultaneously, high throughput
and low delays.

For simplicity, in what follows we will use throughput
to measure the system’s utilization (which is yz) and we
will assume that 7" is normalized over Z, (i.e., T/%).> For
consistency, we also make A unitless, with 0 < A < 1.
The Power of a no-loss system (Pp = 0) is then defined
as follows [7]:

Definition 1 The simple Power function, P 2 P(X), of
a (no-loss) system is defined as the ratio of the system’s
throughput, v, over the system’s mean (normalized) de-
lay, T':
Y
p=1 2)
Note that 0 < P < 1, since v < 1 and 7" > 1. In fact,
P =1 for the D/D/1 and M/M /oo queueing systems.
Let us consider any T'(A) that is continuous and non-
decreasing. Then P is maximized for that value of A,

which we denote by A*, where P(D()) = %\& =0 and

% < 0. As a result it holds [7] that P is maximized
T(l)()\z _ TN
] TO ) T ()
tion can be written as

ar T

I (3)
As Fig. 3 shows, the load at which power is maximized,
namely A*, can be found by taking the tangent to T(})
from the origin,* in which case: % [x=ax= T()\),‘, ),

We denote by P* the maximum power achieved by the
system, i.e., P* = P()*). Note also that for A > ymauz,
P = 0. That follows from the simple fact that for any A >
Ymaz the mean delay T becomes infinite. Therefore we

consider only cases where A < 744, 1-€., non-saturation
A

when According to Eq. (1) this last equa-

or underloaded situations (Fig. 2). By definition, T*
T(X*) and v* 2 ¥(A*). We further have that the optimal
mean number in system is N = y*T* = (v*)?/ P*.

From our discussion above it can be further argued
that the larger the power, the higher the “performance”
of the system 1is.

3 The Power Function in ATM
Switching

As we will later see, the power function has a great ap-
plicability and significance in the area of ATM switch-

2As we will later see this is a quite reasonable assumption as
z = 1 for ATM switches.

4This tangency point is referred to as the “knee” of the curve.



ing since the performance of an ATM switch is described
precisely by the same set of performance measures as a
general system.

In general, an ATM switches is modeled as a timeslot-
ted queueing system where a timeslot is the time it takes
for a cell to be switched, and thus it represents the service
time received by a cell, i.e., z = 1. The switch models we
study are N x N switches (N inputs, N outputs), where
N is very large (theoretically N — o0). We assume that
cell arrivals at the inputs of the switch are governed by
a Bernoulli distribution with parameter A. Furthermore,
we assume that incoming traffic is uniformly distributed
among the output ports. Also in this section we con-
sider switches with infinite size queues, i.e., Pg = 0. The
throughput of a generic ATM switch is described exactly
by Eq. (1).5 Delay is measured as the total (queueing
and switching) time spent by a cell while it is in tran-
sit inside the switch. The simple power function is then
expressed (for underloaded situations®) as:

P== 4
a )
We restrict our attention to three architecturally dif-
ferent, but with common characteristics, switching sys-
tems.

Crossbar switches with Multiple

Input-Queueing

3.1

We first examine the power function for switches that
use Multiple Input- Queueing [3]. Every input port has
m(< N) independent queues (Fig. 4). FEach of these
queues stores incoming cells that are destined to a unique
subset of output ports. This results in a mN x N crossbar
switch” as depicted in Fig. 4 (each value of m yields
a different switching system). We allow all mN queues
to participate in the arbitration phase (and contend for
output ports) at the beginning of each timeslot.
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Figure 4: A 4 x4 ATM switch with multiple input-queues
(m=2).

8x4 Crossbar
Switch Fabric

This scheme dramatically alleviates the head-of-line
(HOL) problem [3]. In [4] we prove that the maximum
throughput achieved by the switch is vpee = 1 + m —
vV1+m2. In the same paper we also derive an exact
expression for its mean delay T as a function of A and

5Note that by throughput we mean what is generally known as
the efficiency of the system, that is, the utilization of the system
or, in the case of switches, of the output ports.

6Note that P — 0 as \ — Ymaz-

" An alternate design would be to consider m (N x N) crossbar
switching planes in parallel, where each queue would then feed a
single plane.

m. In Fig. 5 we show the various mean delay curves for
different values of m. Note that they start from 7" = 1
which 1is, again, the minimum delay, namely that of the
service time, a cell experiences.

30
25

N
o
T

Delay (timeslots)
& &

[ )]
T

1 1
0.0 0.2 0.4 0.6 0.8 1.0
Input load (M)

Figure 5: Mean delay ws. input load in the Multiple

Input-Queueing scheme.

Since we have available our two main performance
indices it behooves us to apply the power function, given
by Eq. (4), to this queueing system, which gives

B 6A(1 —X)

1M — (32 4+ 6m)A3 + (48 + 30m)A2—
(A% —2(1 4+ m)A + 2m)
(24 + 48m)A + 24m

In Fig. 6 we plot this power function for different val-
ues of m. As m increases so does the power. We see from
the same figure that the gain in power becomes dimin-
ishing as m increases. We have numerically calculated
the peak of each m-curve, which represents the maxi-
mum achievable power (P(l)()\) = 0) and tabulated the
results in Table 1. From the same table and from Fig. 6
we see that in fact there is a little gain in performance
going from m = 128 to m = 1024. This finding alone
corroborates an earlier observation of ours [4] that we do

P

not need as many queues per port (m) as the number of
output ports, namely N in order to achieve a very high
performance.
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Figure 6: Power ws. input load in the Multiple Input-
Queueing scheme.

If N represents the average number of cells that are
present per input port (that is in all of the input’s m
queues) then we have the following:

Theorem 1 For the Multiple Input-Queueing ATM
switch, with m queues per input port, it holds that

lim N =1 (5)



| m || Max. Power, P()\*) | A* |
1 0.2370 0.367

2 0.2809 0.454

4 0.3089 0.512

8 0.3251 0.546
16 0.3338 0.565
32 0.3384 0.575
128 0.3419 0.583
1024 0.3431 0.586

Table 1: Maximum Power in the Multiple Input-
Queueing for different values of m.

Proof. From the equation expressing power we find

2A(1— )

Iim P =
im 5

m— 00

(6)

Taking P()(A) = 0 and solving for A we get \* =
2 — V2 ~ 0.586, which gives P* = 6 — 42, as also
shown in Table 1 (for m = 1024). It readily follows that
N = (A*)?2/P* = 1 which is also the celebrated result
for M/G/1 [7].2 The physical interpretation is that the
optimal mean number of cells per input port (in any of
the m queues) is exactly 1. O

In the next two subsections we consider N x N mul-
tiplane switches with m crossbar fabrics that operate in
parallel and which employ queues on both their inputs
and outputs.’

3.2 Multiplane Switches
Input-Queues

with Single

Here we study the performance of a multiplane switch
constructed from m (N x N) crossbar switches where
an input queue is connected to all planes (Fig. 7). The
HOL cell (the cell at the head position of its input queue)
randomly chooses one of the m switching planes to go
through. Queues are required at the outputs to collect
the cells routed through the various planes.

Input Queues
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Figure 7: A 4 x 4 ATM switch with m = 2 switching
planes (4 x 4 crossbars) and Single Input-Queues.

In [6] we give analytical expressions for both the
throughput and mean waiting time (1) for this type
of multiplane switch. Fig. 8§ illustrates the mean delay

81t can be shown that N* = 1 is true also for a Geom/G/1
queue. We remind the reader that Geom /G/1 is the discrete analog
of M/G/1.

9See [6] for a complete description of these multiplane switches.

T = W+1 as a function of the applied input load A. Note
that these mean delay curves start from 7" = 2 since this
is the minimum delay a cell can experience, as it takes a
cell one timeslot to get switched out from its input queue
(and to its selected output queue) and another one to de-
part through its output port. The maximum throughput
achieved is (cf. [6]) Ymar = 1 + m — V1 + m?, a familiar
already result.
Power is then expressed as follows:

P BA(1 — X)(m — A)(2m — X)
(M4 2N 4 (4Tm 4+ 44 + SNt — m2(72 + 1204

(A% = 2(1 4+ m)X + 2m)
+2203 + 6m3(6 + 2L + 12)A2 — 12m3(7 + 12)X + 48m3
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Figure 8: Mean delay vs. input load in the Single Input-
Queues multiplane switch.

Fig. 9 exhibits the power vs. input load relationship
for this type of multiplane switch. We notice that the
curves for m = 16 and for m = 1024 are very close,
leading us to the assessment that m = 16 is sufficient
for implementing this multiplane switch. Table 2 which
shows the maximum power for the various values of m
supports this conclusion.
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Figure 9: Power vs. input load in the Single Input-Queues
multiplane switch.

Moreover, given that N is the average number of cells
per input-output queue pair we have the following:

Theorem 2 For the multiplane ATM switch with Single
Input-Queues and m switching planes, it holds that

lim N* =2 (7)

m— 00



| m || Max. Power, P()\*) | A* |
1 0.1476 0.411

2 0.1931 0.557

4 0.2147 0.637

8 0.2205 0.660
16 0.2218 0.665
32 0.2221 0.667
128 0.2222 0.667
1024 0.2222 0.667

Table 2: Maximum Power in the Single Input-Queues
multiplane switch for different values of m.

Proof. From the last equation expressing power we get

2A(1 — )

li P =
= 4—3)

m— 00

(8)

from which we easily find that A* = 2/3 yielding a max-
imum power of P* = P(A*) = 2/9, as also evident from
Table 2. We immediately have N = (A\*)2/P* = 2. O
The idea here is to “keep the switch busy” by having,
on the average, one cell per (input and output) queue.'°

3.3 Multiplane Switches with Multiple
Input-Queues

Last we consider a multiplane switch where now each (of
the m) planes is fed by a separate (and specific) queue
from each input port. This yields a total of mN input-
queues (Fig. 10). In reality, it is equivalent of stacking
up m N x N identical and independent input-buffered
ATM switches. Again, queues at the outputs serve the
purpose of collecting the relayed cells.
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Figure 10: a 4 x 4 ATM switch with m = 2 switching
planes (4 x 4 crossbars) and Multiple Input-Queues.

Output Queues

A WN

Now, since the maximum throughput of each of these
switches is known [2] to be 2 — /2 then the total max-
imum throughput for the multiplane switch is ymer =
m(2 — \/5) The obvious observation that follows is that
m = 2 planes are enough to realize this type of switch
since throughput cannot exceed 100%. In [6] we give an
analytical expression for the mean delay, as a function of
A and m, which we plot in Fig. 11.

The following expression for the power of this multi-
plane switching system is derived:

10This can be actually proven, if we consider the mean delays
each of the input and output queues is contributing to the total

delay T'.
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Figure 11: Mean delay vs. input load in the Multiple
Input-Queues multiplane switch.

p_ BA(L — A)(m — A)(2m — )
C (144 2)X5 + (59m + 38)A* — (126m + 128)mA3+
(A% —4mA + 2m?)
+(114m + 216)m2X2 — (36m + 168)m3X + 48m*

The power for this type of switch is of special interest.
In Fig. 12 we plot the power function and we notice that
power is not an increasing function of m beyond m = 3
which yields the optimal power;!! it gets slightly worse
as m grows. This rather erratic behavior is attributed
to the fact that the mean delays tend to become larger
with m as the load shifts from the inputs to the outputs,
which occurs as m increases (more cells are switched to
the outputs on a timeslot basis).
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Figure 12: Power vs. input load in the Multiple Input-
Queues multiplane switch.

Table 3 shows the peak values of power and their cor-
responding optimal input loads. This table complements
our observations above. In fact we note that for m > 7
the maximum power is smaller than that for m = 2.

As in section 3.2 we have the following theorem:

Theorem 3 For the multiplane ATM switch with Multi-
ple Input-Queues and m switching planes, it holds that

lim N =2 (9)
Proof. Since
. 2X(1 — )
| P=—— 1
Am P =TT (10)

the proof is basically the same as in Theorem 2. Therefore
P* =2/9 at A* =2/3 (see also Table 3) and N'=2 0O

11

m need not be a power of 2, though it would be convenient for
design purposes.



| m || Max. Power, P()\*) | A* |
1 0.1476 0.411
2 0.2282 0.690
3 0.2347 0.703
4 0.2329 0.695
5 0.2312 0.689
6 0.2299 0.686
7 0.2289 0.683
8 0.2281 0.681
16 0.2253 0.674
128 0.2226 0.668
1024 0.2223 0.667

Table 3: Maximum Power in the Multiple Input-Queues
multiplane switch for different values of m.

4 The Power function as a com-
parison measure

As we have indicated, another useful feature of the power
function is that it is very attractive as a comparison mea-
We use the power function not only to compare
how a single switching architecture performs, e.g., for the
various values of m, but also to compare the different
switching architectures themselves.

Comparing Fig. 6 to Figs. 9 and 12 we see that multi-
ple input-queueing actually achieves a better performance
since it has a higher power. However, in the multiplane
switches their peak power levels are obtained at higher in-
put traffic loads A, which may be preferable under heavy
traffic conditions. Therefore, choosing a suitable design
depends on the applied load at which we would like the
switch to operate.

Comparing Figs. 9 and 12 we notice that they both
offer comparative performance. However, since the first
multiplane scheme is simpler in terms of hardware de-
sign and requirements (i.e., less hardware components)
we might be inclined to choose that one. We also saw
that the power P is not always an increasing function of
m (see section 3.3).

sure.

5 The modified Power function

In this section we extend the concept of the power func-
tion as to include packet loss;'? thus we consider ATM
switches with finite size buffers. In an ATM switch, loss
can occur when cells are forced to be dropped due to lack
of buffer space. This loss contributes to the overall mea-
sured cell loss ratio which gives the fraction of the total
number of cells transmitted that are lost or discarded (on
a VCC basis). In section 1 we defined Pp as the packet
blocking probability. We use the same symbol to denote
the cell drop probability inside a switch. It i1s clear that
increasing the applied input load can lead to a significant

12 Generally, packet loss in a system can be caused due to insuffi-
cient buffer capacity (e.g., M/M/1/K) or due to some (free) server
unavailability (e.g., M/M/m) or both (e.g., M/M/m[K).

increase of cell drop. It is then apparent that minimizing
this cell blocking is an additional objective. The power
function is then modified, in order to account for Pg, as

follows [8]:

Py = L(1— Pg)

7 (1)

where throughput is now expressed as

v = A1 - Pp) (12)
Note that the term 1 — Pg appears twice in the numer-
ator of the modified power function; thus the emphasis
on blocking is evident. This is a reasonable definition as
we later discuss. Buffers operate as a dynamic flow con-
trol mechanism, they regulate the incoming traffic to the
switch. Although dropping cells is definitely an undesir-
able action it is unavoidable given the finite capacity of
the buffers.!3

A more comprehensive and complete study of ATM
switches with finite multiple input queuesis considered in
[4]. We use this example to precisely demonstrate the
applicability of the modified power function, as given in
Eq. (11), in ATM switching systems. We assume that
the total buffer capacity per input port is b, thus a switch
with m queues per port mean that each queue can hold
up to K = b/m cells.

Let then pg be the probability that there are K =
b/m cells in the queue (i.e., a full queue); then Pp = pk.
The queue length distribution [9] is then given by

_ (1= Pg)py°

Pr= SRK-T o
Ej:o p;°

k=0,1,.K—1 (13)

where pi°, k > 0 is the queue length distribution in the
multiple input-queueing switch with infinite buffers and
is given in [4]. Then

A2 =214+ m)A+2m) [ oA :
by (2(1—A)<m—A>)K )
21— N)(m — \) — A2 (W)

The mean queue length is: L = Ele kpyr. Using Little’s
result we obtain the mean delay for the finite capacity
multiple input-queueing switch, which is

L
r=""11
y

(15)
From Eqgs. (11)-(15) we obtain the power for this finite-
buffered switch. Figs. 13 (a)-(b) display this modified
power function for two buffer capacities, b = 256 and
1024. Note again that a buffer capacity of b means an
individual queue size of K = b/m. Thus we are allowed
to plot those curves only for m < b.

These curves support our earlier observation that
blocking, namely the cell drop probability Pg should play
an important role in estimating the power in Eq. (11).

13 Generally, a cell loss within the range 10~8 —10~1? is acceptable
for in ATM networks.



The power for the m = b switching system increases too,
thus it presents no unusual behavior. As a side comment
we mention that in Fig. 13(a) the curves correspond-
ing to m = 64 and m = 256 overlap. In Fig. 13(b) we
notice that moving up from m = 64 to 1024 has little
effect on improving the achieved power (consistent with
the infinite-buffer case).
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Figure 13: Modified Power, Pys, vs.
Multiple Input- Queueing scheme.

input load in the

The interested reader may compare Fig. 13(b) to Fig.
6 and conclude that a buffer capacity of b = 1024 is then
appropriate to implement a finite-buffered multiple input-
queueing ATM switch and still achieve the (theoretical)
performance offered by that switch with infinite buffers
[4]. We can further state that even b = 256 yields a very
good approximation of the infinite buffer case without
any significant performance degradation.

6 Conclusion

We have applied the notion of power to ATM switch-
ing systems. We have investigated this power function
under a variety of similar switching architectures that
deal with the head-of-line problem and offer considerable
performance enhancements. For the switching examples
we considered, analytical expressions were given for var-
ious metrics involved. The same type of evaluation and
comparison based on the power function can be extended
to any switching systems. If no analytical results are
available, one may use actual measurement or simulation
statistics in order to find the power of a switching sys-
tem. We studied the power function for systems with
and without cell loss.

We recognize that another important performance
measure which can be also critical is the variance of the
cell delay. For instance we can add the term C2+1 in the
denominator of Eq. (11), where C? is the coefficient of
variance for the delay. We can use the same approxima-
tion model as for the queue length distribution, namely
the Geom/Geom/1 queue in order to obtain the delay
distribution and its second moment.

The beauty of the power function derives from its
simplicity and ease of implementation and understand-
ing, while powerful in its ability to capture the overall
performance of a system. We have also demonstrated
that power is extremely useful, not only as a leading per-
formance index, but also as a comparison tool.
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